?

Log in

No account? Create an account

Previous Entry | Next Entry

В. Б. Губин. «Об отношении математики к реальности». (via gabria)

Я, конечно, цитат нащипал, но вполне стоит того, чтобы прочитать целиком. О месте математики среди наук, о карте и территории, о королях и капусте. Кому-то покажется скучным и очевидным, но изложено четко, за мыслью идти легко.

…термодинамическая система не возникает сама, а выделяется некоторыми действиями, ограничениями и предпочтениями субъекта. Субъект в соответствиями со своими свойствами и обстоятельствами бытия набрасывает сеть окон, через которые видит мир, и мир предстает перед ним в виде объектов, которых в формально-строгом виде нет (хотя они и зависят от материала, который отражают, на котором строятся). Так, реально происходят отдельные удары частиц о стенки, а не действует какое-то постоянное, размазанное по поверхности объема давление, но тем не менее оказывается возможным в некоторых рамках представить, изобразить мир как термодинамический, да так убедительно, что многие о нем так и думают на самом деле.

[Ай! Удары, частицы и стенка ведь тоже модельные штучки. —f]

Во всяком случае, объект появляется в отражении после некоторого действия по его выделению, по структурированию — не физическому, не реальному, а как бы навязываемому материалу в процессе его отражения…

В модели мира с неисчерпаемой и бесконечно делимой материей никаких самостоятельных границ и, следовательно, самостоятельных, четко выделенных объектов нет (на чем и основывал Беркли свое отрицание материализма, как будто материализм требует существования материи в форме предметов!). Именно ощущение, порождающее импульс к деятельности и в свою очередь давление на себя деятельности, нуждающейся в указаниях ощущения, приводят к неизбежной выработке какого-то из относительно немногочисленных состояний ощущения. В некотором смысле каждое из них соответствует (вырабатывается в ответ) целому множеству состояний отражаемого материала, так что отклик — ощущение — оказывается относительно устойчивым, и лишь при переходе через некоторую меру сменяется другим…

В конечном счете на ощущениях строится в отражении картина мира с относительно устойчивыми областями, разделенными границами — даже когда резких границ в отражаемом нет. Ввиду относительной устойчивости ощущения объекты и теории, возникающие в отражении, никогда точно не описывающие реальности, все же могут быть приемлемыми в некотором круге условий и обстоятельств.

…Довольно известен (по крайней мере пока еще) вопрос, заданный Е. Вигнером о причине «непостижимой эффективности математики в естественных науках».

Вопрос можно понять, во-первых, в следующем смысле: почему именно математика применяется для — для чего? — в конкретных науках, и почему именно ее использование придает такую мощь, действенность и результативность применяющим ее наукам, так что без нее они не смогли бы быть настолько эффективными, т. е. успешными с большой точностью и в чрезвычайно разнообразных обстоятельствах? Ответ на вопрос — для чего? — сам говорит об основаниях ее применения: она применяется как инструмент для систематического упорядочения (включая применение мер) материала и как язык для выражения связей между объектами, а также для законообразного сохранения этих связей в процессах (при интерполяциях и экстраполяциях), т. е. для сохранения точности связей при переходе к другим условиям, когда закономерности этих связей установлены. А с малой точностью и в узком диапазоне обстоятельств можно было бы работать и без математики, что когда-то только и делалось на заре человечества и делается в массе случаев сейчас. Более того, она предоставляет удобную возможность задавать новые вопросы, позволяющие уточнить знания, поставить задачу для эксперимента, ибо при затруднениях выразить полученные данные закономерно они не могут быть сохранены, и тогда сам вопрос об их получении отпадает или вообще не возникает. Примерно как письменность нужна в первую очередь для выражения (включая и сохранение) сложных мыслительных построений.

А в остальном математика эффективна по той же причине, по какой вообще эффективна деятельность…

…ученые, исследующие природу, не понимая достаточно отчетливо места математики в развитии своей науки, тоже, бывает, не слишком правильно относятся к математике, используя ее не всегда уместно, точнее — ошибочно опираясь на нее тогда, когда надо опираться на конкретную научную теорию или на опыт. Автор этой заметки в свое время с удивлением обнаружил, что несколько групп ведущих в своей области ученых строили модели объектов, смешивая реальный объект с его аппроксимацией, которая, конечно, слишком проста для выдачи обоснованных предсказаний во всем спектре свойств объекта и не обеспечивает законности слишком смелых экстраполяций.

…Что же касается раздела прикладной математики, где занимаются экстракцией математических зависимостей, так или иначе описывающих поведение объектов и свойств, выделяемых конкретными науками из реальности (математическое моделирование), то это особая наука, не совпадающая с чистой математикой, и вся она должна быть проникнута научной методологией. Вклад внематематического происхождения, привязывающий классифицирующие (выбирающие решения) математические операции к реальности, в таких работах совершенно очевиден, и работающие здесь специалисты обычно довольно хорошо осознают качественное и “генетическое” различие этих вкладов и предпринимают усилия по развитию и совершенствованию обеих сторон проблемы.

…Дополнительно хотелось бы указать на одну особенность изучения физики, по-видимому существенно отличную от изучения математики. Работники вузов, имеющие отношение к приемным экзаменам по физике, отмечая относительно слабую подготовку абитуриентов по ней, обычно объясняют это тем, что в школе ее не проходят как точную науку. Но, похоже, это объяснение несколько поверхностно, и оно в значительной степени основывается на представлении о близком подобии духа физики духу математики, что в действительности неверно. Физике невозможно хорошо научиться, не научившись чуть ли не зрительно, чувственно, так и напрашивается сказать: физически, — представлять картину, соответствующую задаче. Если в математике по крайней мере большая часть задач решается формальной техникой, то в физике после формулировки задачи требуется на самом деле ее себе правильно поставить, для чего и надо представить себе процесс в его взаимосвязях и движении. А пока учащийся не научится так ставить себе задачу, то есть сначала заниматься именно построением в голове соответствующей картины, которую он потом должен адекватно отразить подходящими уравнениями, он будет «плавать». Поэтому начальное преподавание физики должно быть медленным, преподаватель должен вплоть до показа руками пояснять процессы, их варианты и суть, объяснять школьникам то, что они много раз видели, но не осознавали и не приводили в согласованный вид. Первоначальное обучение должно сопровождаться решением большого количества простых задач для выработки «физического мышления». В этом отношении представляется совершенно ошибочной и вредной замена комплекта учебника и задачника по физике (типа старого задачника под редакцией П. А. Знаменского) одним учебником с вкрапленными в него немногими почти случайными задачами. Впрочем, последнее относится и к математике.

Tags:

Comments

( 14 comments — Leave a comment )
arkanoid
Aug. 9th, 2009 01:06 pm (UTC)
А я говорил, говорил. Несколько лет назад мы об этом спорили, если мне не изменяет память - что универсальность и кажущаяся "объективность" (внесубъектность) математики возникает от того, что она описывает единственный доступный нам способ функционирования разума.
jamhed
Aug. 9th, 2009 04:21 pm (UTC)
да ладно. кантор свои множества придумал задолго до практического применения, в качестве якобы абстрактного любопытного примера. т.о. абстрактно изобретенная математическая конструкция была впоследтвии использована для описания реальных процессов, и так неоднократно.
arkanoid
Aug. 9th, 2009 05:50 pm (UTC)
Ну я не вижу никакого противоречия.
fregimus
Aug. 9th, 2009 07:55 pm (UTC)
Почему именно единственный? Мне кажется, что здесь можно сказать «обычный способ», но единственность тут дедуктивная, опытная. Или я упускаю хвост мысли?
arkanoid
Aug. 9th, 2009 08:05 pm (UTC)
Да, именно дедуктивная, опытная. Просто, если мы вдруг воспользуемся каким-то другим, то все равно не сможем на доступном нам (и окружающим!) языке ни сформулировать ни рассказать - а с таким опытом иметь дело вообще непонятно, как - он за "горизонтом событий" интерсубъективного ;-)
fregimus
Aug. 9th, 2009 09:02 pm (UTC)
Когда-то ведь и математики не было, а потом ее построили. Здесь и сейчас — да, конечно согласен, но, мне кажется, доказательство единственности математики, если бы оно и было, могло бы быть описано только вне математики — а какая же тогда единственность, если предположить другой язык, на котором бы это доказательство было изложено? Если бы оно было, то его бы сразу не было, вот что я хочу сказать.
timur0
Aug. 10th, 2009 07:12 am (UTC)
>>единственный доступный нам способ функционирования разума

а искусство на Вас совсем не действует? это другой доступный нам способ функционирования разума.

еще один способ - это юридический, смесь логики с аргументами ad hominem. только слово "смесь" тут неверное - это вполне себе самостоятельный способ функционирования разума, не конструируемый из других.
ushastyi
Aug. 10th, 2009 12:44 pm (UTC)
На близкую тему.
Я тут давеча дочитал очень интересную книжку "Дао физики", которая проводит параллели между современной квантовой физикой и восточным мистицизмом (в первую очередь -- буддизмом, как наиболее развитой философской системой). Основной тезис в том, что мир непознаваем по частям, а только в целом. Физика, наука вообще, и математика как методический инструмент традиционно изучают природу как совокупность частей, и если познать части и их взаимосвязи, то познаешь мир. Это пошло еще от греков и долгое время довольно неплохо работало. Однако в квантовой физике стала наблюдаться другая картина, когда знание о частях не дает возможности наверняка понимать целое: практически любая частица может "превратиться" в любую с определенной вероятностью, материи нет -- есть только квантовое поле, и т.д. Все взаимосвязано, наблюдатель не может быть изолирован, ученый становится участником, а не наблюдателем. Появляется неопределенность, не от того, что мы что-то знаем не точно, а просто потому что она есть. Бог все таки играет в кости. Вместе с тем именно восточные учения всегда призывали к познанию мира в целом, причем не разумом, а интуитивно, утверждая, что все взаимосвязано, и только "слившись" с миром, можно его познать. Сходство некоторых утверждений квантовой физики с буддийскими сутрами настолько очевидно, что его трудно не заметить. Но гораздо труднее его принять.

Математика, конечно, отвечает на потребности физики. И появление теории вероятностей, теории хаоса и динамических систем, фрактальной геометрии, теории самоорганизации (синергетики) -- это попытка применения математического аппарата для описания недетерменированного мира. Все же, человек не может смириться с тем, что мир непознаваем, и пытается описывать мир если уж не по частям, то хотя бы как структуру.

Прошу прощения за несколько спонтанные мысли, но вот почему-то ваш пост их спровоцировал :)
fregimus
Aug. 10th, 2009 12:56 pm (UTC)
Книжка далеко не однозначная. Ее надо с большой осторожностью и разумным скептицизмом читать. Важно не поддаться теплому ощущению, будто начинаешь понимать квантовую механику…

Физики ее принимают весьма и весьма прохладно. Вот как раз в части сходства с сутрами — особенно. Бывает сходство как у Хофштадтера в GEB — а бывает как у Капры. Тут важно различие между сходствами хорошо прочувствовать.

Теория хаоса и иже с — да, больной вопрос. Мне кажется, что здесь требуется какая-то другая математика. Я эту мысль пытаюсь уже много лет думать, но она почему-то каждый раз ускользает.
ushastyi
Aug. 10th, 2009 01:12 pm (UTC)
Понятно, что неоднозначная. В конце концов цель книжки, конечно же, не показать, что квантовая физика -- это дао, а призвать к новому эпистемологическому подходу, основанному не на детерминизме, а на системном взгляде на мир. И это неплохо согласуется с тенденциями последнего времени, развитием системного анализа, синергетики, хаотической динамики и т.д. Илья Пригожин получил Нобелевскую премию за изучение диссипативных структур, которые ведут себя совершенно аномально с точки зрения классической термодинамики, там наблюдается непредсказуемый системный переход, принципиално сходный с непредсказуемыми анлронными превращениями в квантовой физике. Однако и там и там при кажущемся хаосе есть структура.

Кстати сам Капра в конце книги говорит, что мистическое познание не в коем случае не должно противопоставляться научному. Это разные стороны познания, как корни и ветви дао. Но надо понимать, что научное рациональное познание ограничено даже теоретически (привет от Геделя), в то время как мистическое -- потенциально всеобъемлище, только непередаваемо вербально, поэтому бесполезно для практической технической деятельности современного человечества.
v_b_gubin
Oct. 4th, 2009 12:06 pm (UTC)
Ха, как интересно! Прочитал тут о "Дао физики" Капры...
Я тот самый Губин, который написал о математике, случайно сюда забрел и почитал коменты и напал на похвалу Фритьофу Капре, моему старому клиенту.
Почитайте мою статью "Анти-"Дао физики"" http://gubin.narod.ru/MLG-4.HTM

Думаю, что интересно было бы почитать и другие статьи на сайте http://gubin.narod.ru/ в сборниках и россыпью.
fregimus
Oct. 4th, 2009 12:49 pm (UTC)
Re: Ха, как интересно! Прочитал тут о "Дао физики" Капры...
Обязательно почитаю, само собой. Закладка в очереди стоит. Только про Капру уж пропущу, ну его. Не понимаю, почему Вы взялись его громить — в России он как-то особенно популярен? По-моему, словоблудие обыкновенное, какая уж там критика.
v_b_gubin
Oct. 4th, 2009 01:03 pm (UTC)
Re: Ха, как интересно! Прочитал тут о "Дао физики" Ка
На него ссылались почти все авторы "Концепций современного естествознания", числом - десятки, включая программу с участием Степина, тогда директора института философии, принятую Минобразованием в 2000 году, проштампованную завкафедрой общей физики физтеха Гладуном.
Еще я читал переводной с английского учебник философии для чайников, гда философия как раз развивается и заканчивается Капрой.
Так что шутить тут неуместно.
fregimus
Oct. 4th, 2009 01:04 pm (UTC)
Да уж, какие тогда шутки.
( 14 comments — Leave a comment )