?

Log in

No account? Create an account

Previous Entry | Next Entry

Вигнер Е «Непостижимая эффективность математики в естественных науках (физика наших дней)» УФН 94 (3) (1968) / Е. Wigner, The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Comm. Pure and Appl. Math. 131, 1 (1960). Лекция в честь Рихарда Куранта, прочитанная 11 мая 1959 г. в Нью-Йоркском университете. Перевод В. А. Белоконя и В. А. Угарова.

…две главные идеи, которым посвящена статья. Первая идея: математические представления могут оказаться в совершенно неожиданной связи. Более того, они часто приводят к неожиданно удачному и точному описанию явлений в этой связи. Вторая идея: именно благодаря упомянутой широте применения математических представлений и тому факту, что мы не понимаем причин такой широты, мы ниоткуда не может узнать, единственна ли теория, сформулированная на языке наших математических представлений. Мы похожи на человека со связкой ключей, который, пытаясь открывать одну дверь за другой, всегда находит правильный ключ с первой или второй попытки. Это заставляет его сомневаться относительно взаимно-однозначного соответствия между ключами и замками.

…Моя главная цель - осветить этот вопрос с нескольких сторон. С одной стороны, невероятная эффективность математики в естественных науках есть нечто граничащее с мистикой, ибо никакого рационального объяснения этому факту нет. С другой стороны, именно эта непостижимая эффективность математики в естественных науках выдвигает вопрос о единственности физических теорий. Для того чтобы обосновать утверждение о невероятно важной роли математики в физике, полезно для начала сказать кое-что по поводу того, что такое математика, затем выяснить, что такое физика. После этого следует рассмотреть роль математики в физической теории и, наконец, понять, почему успехи математики в физике оказываются столь потрясающими. Совсем кратко мы остановимся на вопросе о единственности теорий в физике…

Трудно отделаться от впечатления, что чудо («В своей аксиоматической форме математика представляется скоплением абстрактных форм, причем определенные аспекты реальности как будто бы в результате предопределения укладываются в некоторые из этих форм» Н. Бурбаки. — перев.), представшее перед нами, не менее поразительно, чем то, что разум человека смог связать воедино и без противоречий тысячи аргументов. Это чудо можно сравнить ещё с двумя чудесами: существованием законов природы и способностью человеческого мышления раскрывать их. Наиболее правдоподобным объяснением независимого формирования математических понятий в физике, как мне кажется, служит утверждение Эйнштейна, что единственным критерием для принятия физических теорий должна быть их красота… Математические понятия, которые стимулируют мысль бесспорно, обладают красотой. Однако высказывание Эйнштейна в лучшем случае относится к характеру теорий, в которые мы хотим верить, но не имеет отношения к точности, присущей той или иной теории. Поэтому мы займемся именно последним вопросом.

Возможное объяснение того факта, что физики используют математику для формулировки законов природы, состоит в том, что физики — довольно безответственные люди. Именно поэтому, когда физик обнаруживает взаимосвязь между двумя физическими величинами, которая напоминает связь, хорошо известную из математики, он немедленно приходит к заключению, что найденная им связь тождественна связи, рассмотренной в математике, просто потому, что он не знает никакой другой. Цель приведенного рассуждения состоит отнюдь не в том, чтобы опровергнуть обвинение физиков в известной безответственности. Не исключено, что это обвинение и справедливо. Тем не менее важно подчеркнуть, что математическая формулировка результатов наблюдений физика, часто довольно грубых, приводит в неправдоподобно многочисленных случаях к удивительно точному описанию большого класса явлений. Это обстоятельство показывает, что математический язык следует рассматривать как нечто большее, чем просто язык, на котором мы должны говорить; оно показывает, что математика на самом деле является правильным (подходящим) языком…

…эффективность и точность математической формулировки законов природы на языке таких понятий, с которыми удобно проводить различные манипуляции; при этом законы природы, как оказывается, обладают почти фантастической точностью, хотя и в узко ограниченном диапазоне условий. Я предлагаю называть закономерность, которую иллюстрируют эти примеры, эмпирическим законом эпистемологии (т. е. науки об основах теории познания). Этот закон вместе с принципами инвариантности представляет собой неотъемлемую часть теоретической физики. Без законов инвариантности утверждения теоретической физики не могли бы служить основой для объяснения явлений; но если бы не был верен закон эмпирической эпистемологии, то у нас просто не хватило бы духу совершать открытия, т. е. не было бы достаточных эмоциональных стимулов для успешного изучения законов природы. Доктор Р. Г. Сакс, с которым я обсуждал эмпирический закон эпистемологии, назвал этот закон догматом веры физиков-теоретиков. Это так и есть на самом деле (В этом месте идеи Вигнера в особенности перекликаются с идеями Эддингтона…). Этот догмат веры, однако, хорошо подкрепляется примерами из практики, куда более многочисленными, чем те три примера, о которых шла речь выше.

Эмпирическая природа предыдущих заключений представляется мне очевидной. Они, несомненно, не являются «логически неизбежными», и нет никакой необходимости для доказательства этого ссылаться на их применимость только к весьма незначительной части нашего знания неживого мира. Но было бы абсурдным верить в очевидность того, что существует математически простое выражение для второй производной от координаты, поскольку не существует простых выражений для самой координаты и скорости. Тем более удивительна готовность верить в чудесный дар, содержащийся в эмпирическом законе эпистемологии. Ведь способность человеческого разума «нанизывать» одно за другим 1000 умозаключений и не запутываться в противоречиях, о чем я говорил выше, - столь же чудесный дар…

Рассмотрим несколько примеров «ложных» теорий, которые дают пугающе (в силу их ложности) точное описание некоторых групп явлений …теори[я] свободных электронов, которая дает загадочно точное описание многих, если не большинства, свойств металлов, полупроводников и изоляторов. Она объясняет, в частности, тот факт (который никогда не удавалось понять на основе «настоящей теории»), что изоляторы обнаруживают удельное электрическое сопротивление, иногда в 1026 раз превосходящее сопротивление металлов. Фактически нельзя найти каких-либо опытных опровержений того, что сопротивление изоляторов в некоторых условиях бесконечно, как это предсказывается теорией свободных электронов. Тем не менее мы убеждены, что теория свободных электронов представляет собою лишь грубое приближение, которое рано или поздно будет заменено на более подходящий способ описания явлений в твердом теле.

Достигнутые нами успехи позволяют сказать, что положение с теорией свободных электронов тревожное, однако оно вряд ли свидетельствует о непреодолимых противоречиях современных представлений. И все же теория свободных электронов внушает нам сомнения относительно того, должны ли мы безоговорочно принимать численное согласие между теорией и экспериментом как доказательство корректности теории. Мы уже привыкли к таким сомнениям (Л. Д. Ландау однажды очень четко сказал: «По принципу Бора согласие теории с экспериментом само по себе ничего не означает». — перев.).

Гораздо больше трудностей и сомнений возникло бы, если бы нам удалось в один прекрасный день разработать теорию сознания, или теоретическую биологию, с той же последовательностью и убедительностью, какой обладают наши теории неживой природы. Менделевские законы наследственности и развитие генетики могут оказаться предвестниками такой биологической теории. Более того, вполне возможно, что удастся найти достаточно абстрактный аргумент, который укажет на существование противоречия между такой теорией и известными принципами физики. Аргумент этот может оказаться столь абстрактным, что будет невозможно разрешить упомянутое противоречие в пользу той или иной теории - даже экспериментально. В такой ситуации наша вера в наши теории была бы сильно подорвана; возникло бы сомнение в реалистичности принимаемых нами понятий. Тогда мы испытали бы глубокое чувство крушения в наших попытках найти то, что я называю «конечной истиной». Довод в пользу принципиальной допустимости такой ситуации сводится к тому, что мы не знаем, почему так хорошо работают наши теории. Ибо их точность не может служить доказательством ни их истинности, ни взаимной согласованности. Автор данной статьи убежден в том, что ситуация, аналогичная этой, имеет место при сопоставлении современных законов наследственности и физики.

Позвольте мне все же закончить более оптимистически. Чудесная загадка соответствия математического языка законам физики является удивительным даром, который мы не в состоянии понять и которого мы, возможно, недостойны. Мы должны испытывать чувство благодарности за этот дар. Следует надеяться, что он не покинет нас и в будущих исследованиях и что он будет - хорошо это или плохо - развиваться к нашему большому удовлетворению, а быть может, и к нарастающему беспокойству, расширяя область познания окружающего нас мира.


Что думает всеведущий All о непостижимой эффективности математики в физике? Математика, безусловно, эффективна в физике — но, может быть, тут можно и с другой стороны посмотреть, сделав поправку на «субъективную объективность» физики, не рассматривая ее вне нас, человеков. Физические объекты — не природная данность, а работа человеческого мышления, как и математика. Вигнер касается этого, но только мельком, не углубляясь, когда говорит о выделении абстракций и пренебрежении определенными деталями объектов. То есть, сопоставления, изоморфизмы, можно сказать, строятся у него между объектами мира и объектами теории. А меня вот эти самые объекты мира беспокоят. Нет ведь такой штуки, как совсем уж объективные объекты мира. Кто-нибудь из физиков ставил вопрос так? Мне сейчас интересно, чтобы это были не философы, а естественники, и лучше всего физики.

Tags:

Comments

yurvor
May. 23rd, 2011 07:24 pm (UTC)
Я бы взглянул на это по-другому. А именно:

Математика - это всё то, что эффективно в естественных науках (в частности, физике).

Тогда никакой мистики не будет, никаких чудес, всё естественно :)
fregimus
May. 24th, 2011 03:56 pm (UTC)
http://fregimus.livejournal.com/152385.html?thread=4173889#t4173889

Значит, новая матричная механика не была математической теорией (вернее, никто не знал, математическая она или нет) до тех пор, пока не выяснилось, что она описывает возбужденный атом гелия. Я понимаю, но для меня слово «математика» имеет другой смысл.
yurvor
May. 24th, 2011 04:08 pm (UTC)
Нет, ты не так понял мои слова :)

Конечно, матричная механика была математической теорией и до атома гелия. Просто если бы атом гелия подчинялся другой какой теории, то её бы открыли и разработали для этого случая. Например, Ньютон разработал дифференциальное исчисление специально для того, чтобы описать механическое поведение.

Давай, я переформулирую, наверно так: "Всё, что эффективно в естественных науках, принадлежит математике (но ей принадлежит не только это)."
fregimus
May. 24th, 2011 04:21 pm (UTC)
Тут вся фишка в том, что теорию отнюдь не разрабатывали для этого случая. Она его «чисто случайно» описала.
yurvor
May. 24th, 2011 04:29 pm (UTC)
А что, случайностей не бывает?

Смотри, логика такая. К необъяснённому эксперименту пробуем подобрать несколько известных теорий, если какая-то подходит, то и нормально. Если никакая не подходит, разрабатываем новую. Новую _математическую_ теорию, заметь.

Где тут удивительное? :)
fregimus
May. 24th, 2011 04:37 pm (UTC)
«Счастливая случайность» начинается там, где выясняется, что математическая теория объясняет явления далеко за пределами того, для чего она придумывалась.
yurvor
May. 24th, 2011 06:00 pm (UTC)
Моя точка зрения состоит в том, что - да, это так. Но это не чудо, а нормальный и естественный ход вещей. "Закон развития познания", если угодно.
antihydrogen
May. 24th, 2011 06:38 pm (UTC)
Если мы светим фонариком на стену и видим, что освещенный участок зеленый, то, конечно, у нас нет никаких строгих логических оснований предполагать, что остальная часть стены тоже зеленая, но если мы, помахав фонариком, убедимся что она таки вся зеленая, ничего потрясающе удивительного в этом тоже не будет. У физической теории всегда есть граница применимости, но нет никаких оснований для того, чтобы она строго совпадала с границей области фактов, для объяснения которых она была сформулирована. Теории, с которыми такое несчастье все таки произошло, называются неудачными гипотезами и в учебники не попадают.

В качестве компенсации подкину вам аргумент: квантовая механика считалась частной теорией об электронных оболочках атомов, пока Гамов с ее помощью не объяснил альфа-распад