?

Log in

No account? Create an account

Previous Entry | Next Entry

В фильме (с благодарностью ripe_berry) схематично показывается, как работает АТФ-синтаза, сложное молекулярное электромеханическое устройство, приводимое в действие разностью электрохимического потенциала по разные стороны мембраны митохондрии и использующее эту энергию для синтеза молекулы аденозин-5’-трифосфата (АТФ). Реакция синтеза АТФ из аденозиндифосдата (АДФ) и иона фосфата эндотермическая, то есть забирает энергию из внешнего источника.

АДФ + PO43- + Е ⇔ АТФ

АТФ используется клетками как источник энергии во многих клеточных процессах. Та же самая реакция может идти и в обратном направлении, когда АТФ расщепляется на специальном белке-катализаторе обратно на АДФ и фосфат с выделением энергии.



АТФ-синтаза состоит из двух механизмов. Первый, F0, это электромотор, находящийся в клеточной мембране и превращающий энергию, запасенную в разности потенциалов по разные стороны клеточной мембраны. Липидная мембрана служит изолятором в этой электрохимической «батарейке»: через нее ионы не проходят. Разность потенциалов создается другими сложными механизмами в конечном счете из «сжигания» сахара в кислороде. Ион водорода H+ втягивается во «впускной коллектор» и присоединяется к белковой дольке ротора. Ротор поворачивается за счет электростатических сил, а долька, достигшая «выхлопного коллектора» мотора, освобождается от иона каталитическим белком, и этот ион проваливается внутрь клетки, опять же за счет электростатических сил, стремящихся выровнять потенциал по обе стороны мембраны. Таким образом, электроэнергия сначала превращается в механическую энергию вращения молекулярного вала, присоединенного к ротору и уходящего вглубь клетки, к механизму синтеза, F1.

Механико-химический реактор F1 состоит из трех белковых долек, каждая из которых состоит из двух белковых молекул (их называют α-F1 и β-F1, а вал сделан из одной молекулы, обозначаемой γ-F1). Каждая долька может принимать две устойчивые пространственные конфигурации за счет взаимного межатомного притяжения — как обычный настенный выключатель оказывается в двух устойчивых положениях, хотя промежуточные положения неустойчивы. Одно из этих положений, однако, имеет более высокую энергию. Молекулы сдвигаются в конфигурацию с более высокой энергией за счет асимметрии вращающегося γ-вала, как будто бы «кулачком» на нем.

Когда к αβ-комплексу присоединяется АДФ и ион фосфата, равновесие нарушается, и молекула, как пружинка с запасенной энергией, перепрыгивает в состояние с меньшей энергией, а запасенная энергия тратится на сближение АДФ и фосфатного иона, в результате чего те соединяются в молекулу АТФ, в конечном счете уносящую этот запас энергии.

Вращение механизма можно увидеть в микроскоп, если присоединить к ротору в F0 специально изготовленную длинную светящуюся (флюоресцирующую) молекулу-стержень. В самом конце фильма можно увидеть реконструкцию этого потрясающего опыта Масасуке Ёсиды и врезку с данными, показывающими вращение ротора.

Интересно, что на нижнем конце ротора имеется еще один белок, δ-F1, который тоже умеет изменять конфигурацию в присутствии АДФ, исходного реагента для реакции. Когда АДФ вокруг реактора оказывается мало, этот белок меняет форму и заклинивает ротор, чтобы не расходовать электрохимическую энергию вхолостую, поскольку продвижение ионов H+ через остановленный ротор невозможно. Да, и об экономии клеточной электроэнергии природа тоже «подумала»!

Больше информации о работе АТФ-синазы можно найти в конспекте А. Крафтса из университета Иллинойса (англ.), а кое-что из истории исследования этого механизма здесь, по-русски.

Tags:

Comments

fregimus
Dec. 9th, 2012 10:25 am (UTC)
Я напишу, что забирает энергию из внешнего источника, не влезая в разные потенциалы. Годится?
termometr
Dec. 9th, 2012 10:38 am (UTC)
Поскольку реакция... сильно эндотермическая, она требует внешнего источника энергии.
- так обычно пишут в подобных случаях. типо кому надо - поймут, а мы не соврали.