Category: космос

oak

Гений плюс высокомерие минус скромность (1)

Новая истина в науке одерживает победу не потому, что ее оппоненты «прозревают», а просто потому, что все они в конце концов умирают, а новому поколению известна только новая система.
— Макс Планк

Да, так вот, Collapse )

Окончание здесь
oak

Эволюция небесной интуиции

Прежде, чем вы начнете читать этот текст, я попрошу вас ответить на два простых вопроса, не заглядывая в другие ответы. Первый: по каким траекториям обращаются планеты вокруг Солнца? Второй: что такое парабола? Если вам удобно, оставьте ваши ответы, мне будет интересно, угадал я их или нет; отвечать на них не обязательно, но обязательно, чтобы ответы были честными: до прочтения текста и комментариев. Правильного ответа на них нет; это вопросы о вашей интуиции, а правильной интуиции, само собой, быть не может. А разговор наш будет именно об истории астрономической и математической (в приложении к небесной механике) интуиции, и о ее возможном дальнейшем развитии.

Collapse )
oak

Бременем косным он был, — и только…

I. Капризы формулы

Меня спросили в одном обсуждении о том, совместима ли спонтанность сознания с алгоритмической организацией. Покажу, что спонтанность, непредсказуемость с алгоритмами еще как совместима. Математикам это, конечно, хорошо известно. Например, компьютеры не производят истинно случайных чисел: алгоритмы генерируют так называемые псевдослучайные последовательности, которые некоторыми математическими проверками неотличимы от случайных. Непредсказуемы это ряды чисел и для нашего разума. Человек, как и другие млекопитающие и даже насекомые, прекрасно обучаем. Мы находим образцы очень легко, помимо воли, даже помимо сознания. Ежесекундно мозг перерабатывает многие тысячи возможных совпадений, отбирая будущие «штампы» поведения, будущие слова в языке, а у кого-то и будущие великие открытия. Однако, в рядах псевдослучайных чисел мы не видим никаких закономерностей. Те, кто играл, например, в «сапера» или раскладывал на компьютере пасьянсы, хорошо знают, что предсказать, где будут спрятаны мины или какая карта откроется из колоды следующей, не получается, даже если днями напролет целыми месяцами играть!

Каков же критерий «спонтанности», непредсказуемости? Математика пользуется более строгими определениями, чем «неясно, что будет дальше», Вместо того мы говорим о «неупрощаемых вычислениях». Последовательность вычисленных алгоритмом чисел считается неупрощаемой, или нередуцируемой, если нет более простого способа узнать, каким будет следующее число в ней, чем просто взять и вычислить все предыдущие. Другими словами, сказать, что будет делать алгоритм через тысячу, или миллион, или N шагов нельзя предугадать иначе, чем запустив этот алгоритм и подождав, пока он эти шаги не сделает, потому что нет более простого алгоритма, чтобы получить тот же результат за меньшее время вычисления.

Collapse )

Видим, что эти все вычисления легко упрощаемы и предсказуемы. Пока что все идет, как и предполагает здравый смысл: простой алгоритм — просто предсказуемый результат. Так ведь всегда бывает?

Нет. Достаточно только положить коэффициент при x2 равным двум (рис. 7), и поведение простого алгоритма тут же делается сложным, таким, что в нем нет никаких циклических повторений. Этот алгоритм математически неупрощаем: самый простой способ узнать xn тот же, что и самый сложный: вычислить x2 из x1, x3 из x2 и так далее, и, в конце концов, xn из xn-1.

Рис. 7.

II. Бабочка крылышками бяк-бяк-бяк-бяк…

Ну и что, скажете вы, ведь математика — просто выдумка, система правил, происходящих из положенных истинными аксиом. Аксиомы те, конечно, не случайны, а выбраны для описания нашего мира; математика — не только и не столько игра для ума, сколько мощнейший инструмент для описания физического мира вокруг нас. Она бы не была таковой, если бы начала математики не были положены из наблюдений природы, от счета камушков до общей теории относительности. Однако, возразите вы, математика прекрасно описывает физические явления, но мало ли чего она еще описывает? Не все, что следует из математики, встречается в реальности! Где же видано в природе сложное поведение, чтобы оно следовало из простого итеративного алгоритма?

Collapse )

Итак, задача нашего объяснения исполнена: существуют простые алгоритмы, дающие нередуцируемый, то есть не предсказываемый проще, чем исполнением алгоритма, результат, и такие алгоритмы имеют непосредственное отношение к наблюдаемым в природе явлениям. Не только погода, но и экономика, например, тоже является сложной системой; биосфера континентов и Земли в целом тоже оказывается сложной, хотя численности популяций в коротком приближении очень хорошо описываются такими же простыми итеративным алгоритмами. Сознание тоже, по-видимому, является сложным, непредсказуемым продуктом простого алгоритма, или, скорее, многих взаимодействующих простых алгоритмов. Во всяком случае, модель одного нейрона проста, а модели нейронных сетей, построенные из математических нейронов, проявляют свойства вполне напоминающие сознательные: узнавание изображений, например, или распознавание текста, и, главное, поиск закономерностей и их запоминание, то есть обучение.

«Спонтанность» же, в отличие от нередуцируемости, возможна лишь в глазах наблюдателя. Непредсказуемость мы не делаем равной свободе воли или спонтанности: поведение похожего на огромную дырчатую картофелину куска камня в космосе не называют спонтанным, а ураганам, дождям и клубам дыма приписывают свободу воли, наверное, только синтоисты. Поведению же животных, а тем более человека, в обычной речи запросто придается и спонтанность, и свобода действий. На самом же деле, корень всех этих проявлений один, и лежит в одном и том же феномене, таком вездесущем и таком поздно замеченном и мало пока исследованном: хаосе.

III. Vocatne fractalem quod fregimus?

Collapse )

И что же можно получить из простых итеративных формул? Вот такие картинки.


Зарождение звезд
в кислоте
 
 
Членение муравья
 
 
Клетки цветов
 
 
Древние
Collapse )